论文标题

增加红外干涉仪与误差相关模型的可实现对比度

Increasing the achievable contrast of infrared interferometry with an error correlation model

论文作者

Kammerer, Jens, Mérand, Antoine, Ireland, Michael J., Lacour, Sylvestre

论文摘要

干涉观察值密切相关,但是在数据分析过程中忽略这些相关性是很常见的做法。我们为非常大的望远镜干涉仪重力数据中存在的相关性开发了一个经验模型,并表明正确考虑它们会产生淡淡的检测极限,并提高了潜在检测的可靠性。我们从重力数据还原管道的中间产物中提取了(平方)可见性幅度和闭合相的相关性,并将我们的经验模型拟合到它们。然后,我们使用模拟和真实的重力数据进行了模型拟合和伴随注入和恢复测试,这些数据受相关噪声的影响,并在忽略相关性以及与我们的经验模型适当地说明它们时进行了比较。考虑到相关性时,微弱的源检测限在角度分离处最多可提高$ \ sim 2 $ $> 20〜 \ rm {mas {mas} $。对于基于$χ^2 $统计的常用检测标准,这主要导致声称的检测更可靠。忽略干涉数据中存在的相关性是一个危险的假设,可能会导致大量错误检测。仅当正确考虑相关性时,通常使用的检测标准(例如,在模型拟合管道中)才可靠;此外,仪器团队应作为官方数据减少管道的一部分提供完整的协方差矩阵,而不是统计独立的错误栏。

Interferometric observables are strongly correlated, yet it is common practice to ignore these correlations in the data analysis process. We develop an empirical model for the correlations present in Very Large Telescope Interferometer GRAVITY data and show that properly accounting for them yields fainter detection limits and increases the reliability of potential detections. We extracted the correlations of the (squared) visibility amplitudes and the closure phases directly from intermediate products of the GRAVITY data reduction pipeline and fitted our empirical models to them. Then, we performed model fitting and companion injection and recovery tests with both simulated and real GRAVITY data, which are affected by correlated noise, and compared the results when ignoring the correlations and when properly accounting for them with our empirical models. When accounting for the correlations, the faint source detection limits improve by a factor of up to $\sim 2$ at angular separations $> 20~\rm{mas}$. For commonly used detection criteria based on $χ^2$ statistics, this mostly results in claimed detections being more reliable. Ignoring the correlations present in interferometric data is a dangerous assumption which might lead to a large number of false detections. The commonly used detection criteria (e.g. in the model fitting pipeline CANDID) are only reliable when properly accounting for the correlations; furthermore, instrument teams should work on providing full covariance matrices instead of statistically independent error bars as part of the official data reduction pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源