论文标题

在基于现场的高通量表型机器人的RGB-D摄像机的性能评估和改进的深度范围

Depth Ranging Performance Evaluation and Improvement for RGB-D Cameras on Field-Based High-Throughput Phenotyping Robots

论文作者

Fan, Zhengqiang, Sun, Na, Qiu, Quan, Zhao, Chunjiang

论文摘要

RGB-D摄像机已成功用于室内高通量表型(HTTP)。但是,由于不稳定的照明,镜面反射和弥漫性反射等产生的噪音和干扰,我们仍需要评估它们对现场HTTP的能力和可行性,以解决这些问题,我们评估了两个消费者级别的RGB-D435I和KERTEP SEMES和KERTEP SEMISER和KERTIER SEMIRES的深度范围的表现(一种补偿深度测量误差的策略。为了进行绩效评估,我们专注于确定其不同作物器官的最佳范围区域。根据评估结果,我们提出了一种基于亮度和距离的支持向量回归策略,以补偿范围的错误。此外,我们分析了不同照明强度下两个RGB-D摄像机的深度填充速率。实验结果表明:1)对于Realsense D435i,其有效范围区域为[0.160,1.400] M,并且场内填充速率约为90%。 2)对于Kinect V2,它在[0.497,1.200] m中具有高范围的精度,但其场内填充速率小于24.9%。 3)我们的错误补偿模型可以有效地减少照明强度和目标距离的影响。该模型的最大MSE和最小R2分别为0.029和0.867。总而言之,realsense d435i的性能比在现场HTTP上的Kinect V2更好。

RGB-D cameras have been successfully used for indoor High-ThroughpuT Phenotyping (HTTP). However, their capability and feasibility for in-field HTTP still need to be evaluated, due to the noise and disturbances generated by unstable illumination, specular reflection, and diffuse reflection, etc. To solve these problems, we evaluated the depth-ranging performances of two consumer-level RGB-D cameras (RealSense D435i and Kinect V2) under in-field HTTP scenarios, and proposed a strategy to compensate the depth measurement error. For performance evaluation, we focused on determining their optimal ranging areas for different crop organs. Based on the evaluation results, we proposed a brightness-and-distance-based Support Vector Regression Strategy, to compensate the ranging error. Furthermore, we analyzed the depth filling rate of two RGB-D cameras under different lighting intensities. Experimental results showed that: 1) For RealSense D435i, its effective ranging area is [0.160, 1.400] m, and in-field filling rate is approximately 90%. 2) For Kinect V2, it has a high ranging accuracy in the [0.497, 1.200] m, but its in-field filling rate is less than 24.9%. 3) Our error compensation model can effectively reduce the influences of lighting intensity and target distance. The maximum MSE and minimum R2 of this model are 0.029 and 0.867, respectively. To sum up, RealSense D435i has better ranging performances than Kinect V2 on in-field HTTP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源