论文标题
gaffney对歧管的差异形式的不平等现象的新证明:差异方法àlakozono-yanagisawa
A new proof of the Gaffney's inequality for differential forms on manifolds-with-boundary: the variational approach à la Kozono--Yanagisawa
论文作者
论文摘要
令$(\ Mathcal {m},g_0)$为紧凑的Riemannian歧管束缚。我们通过$ \ Mathcal {m} $的边界价值空间中的差异形式的古典不平等提出了新的证明,这是通过各种方法通过差异方法àlakozono-yanagisawa [$ l^r $ $ $ $ $ $ - 变量 - 矢量领域和helmholtz- helmholtz--ehmholtz--weyl decomposition in Indiana in Indiana in Indiana,Indiana,Univ。数学。 J. 58(2009),1853--1920]与基于Bochner技术的全球计算相结合。
Let $(\mathcal{M},g_0)$ be a compact Riemannian manifold-with-boundary. We present a new proof of the classical Gaffney's inequality for differential forms in boundary value spaces over $\mathcal{M}$, via the variational approach à la Kozono--Yanagisawa [$L^r$-variational inequality for vector fields and the Helmholtz--Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (2009), 1853--1920] combined with global computations based on the Bochner's technique.