论文标题
su(n)fermions的持续电流
Persistent Current of SU(N) Fermions
论文作者
论文摘要
我们研究了SU($ n $)费米子系统中的持续电流,其排斥相互作用限制在环形电位中,并被有效的磁通量刺穿。通过应用Bethe Ansatz和数值分析的组合,我们证明,作为自旋相关性,相互作用和应用通量的组合效应,系统中可能会发生特定现象:基态下的Spinon创建。结果,持续电流中的特征是出现的。观察到固定持续电流周期性的基本通量量子从单个粒子变为分数通量量子的极端情况,其中所有粒子共享一个量子。我们表明,持续的电流取决于旋转组件的数量$ n $,粒子数量和相互作用的特定方式,在某些物理状态下具有通用性状。在整数填充分数时,持续电流被莫特光谱间隙抑制了排斥相互作用的阈值。尽管其介观性质,但电流仍显示出明显的有限尺寸缩放行为。当前景观持续存在的特定奇偶校验影响。
We study the persistent current in a system of SU($N$) fermions with repulsive interaction confined in a ring-shaped potential and pierced by an effective magnetic flux. By applying a combination of Bethe ansatz and numerical analysis, we demonstrate that, as a combined effect of spin correlations, interactions and applied flux a specific phenomenon can occur in the system: spinon creation in the ground state. As a consequence, peculiar features in the persistent current arise. The elementary flux quantum, which fixes the persistent current periodicity, is observed to evolve from a single particle one to an extreme case of fractional flux quantum, in which one quantum is shared by all the particles. We show that the persistent current depends on the number of spin components $N$, number of particles and interaction in a specific way that in certain physical regimes has universality traits. At integer filling fractions, the persistent current is suppressed above a threshold of the repulsive interaction by the Mott spectral gap. Despite its mesoscopic nature, the current displays a clear finite size scaling behavior. Specific parity effects in the persistent current landscape hold.