论文标题

CVC:非平行语音转换的对比度学习

CVC: Contrastive Learning for Non-parallel Voice Conversion

论文作者

Li, Tingle, Liu, Yichen, Hu, Chenxu, Zhao, Hang

论文摘要

循环一致的生成对抗网络(CycleGAN)和基于变异的自动编码器(VAE)模型最近在非平行语音转换中广受欢迎。但是,他们经常遭受艰难的训练过程和不满意的结果。在本文中,我们提出了CVC,这是一种基于对比的学习语音转换方法。与以前的基于自行车的方法相比,CVC仅需要通过利用对比度学习来进行有效的单向GAN训练。当涉及到非并行的一对一语音转换时,CVC处于标准杆或比Cyclegan和VAE更好,同时有效地减少了训练时间。 CVC进一步证明了多对多语音转换的卓越性能,从而实现了看不见的演讲者的转换。

Cycle consistent generative adversarial network (CycleGAN) and variational autoencoder (VAE) based models have gained popularity in non-parallel voice conversion recently. However, they often suffer from difficult training process and unsatisfactory results. In this paper, we propose CVC, a contrastive learning-based adversarial approach for voice conversion. Compared to previous CycleGAN-based methods, CVC only requires an efficient one-way GAN training by taking the advantage of contrastive learning. When it comes to non-parallel one-to-one voice conversion, CVC is on par or better than CycleGAN and VAE while effectively reducing training time. CVC further demonstrates superior performance in many-to-one voice conversion, enabling the conversion from unseen speakers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源