论文标题

在上下文指导的掉期和\ textbf {cds}游戏下对排列进行分类

Classifying Permutations under Context-Directed Swaps and the \textbf{cds} game

论文作者

Brown, G., Mitchell, A., Raghavan, R., Rogge, J., Scheepers, M.

论文摘要

一个称为上下文的特殊排序操作,指向互换,并表示\ textbf {cds},在排列上执行某些类型的块互换。 \ textbf {cds}可以排序时,则使用任何形式的最大块互换对其进行对其进行分类。这项工作根据\ textbf {cds}符合条件上下文的数量介绍了置换的分类。在先前的工作中,发现了一个名为“置换战略桩”的对象,并证明可以有效地衡量置换的非\ textbf {cds} - 可存在性。当关注最大战略桩的排列分类时,当\ textbf {cds}符合条件的上下文的数量接近最大以及合格上下文的数量很小时,就会给出完整的表征。保留\ textbf {cds}符合条件的上下文的组动作通过Orbit-stabilizer Theorem提供了有关具有最大策略堆的排列数量和给定数量的\ textbf {CDS} {CDS} - 符合条件的上下文的列举结果。先前的工作介绍了一款自然的两人游戏,该游戏对不是\ textbf {cds} - 可索的排列。在游戏的特定实例中,哪个玩家具有获胜策略的决策问题似乎具有很高的计算复杂性。为了扩大先前的结果,这项工作为玩家One提供了新的条件,可以在此组合游戏中具有获胜策略。

A special sorting operation called Context Directed Swap, and denoted \textbf{cds}, performs certain types of block interchanges on permutations. When a permutation is sortable by \textbf{cds}, then \textbf{cds} sorts it using the fewest possible block interchanges of any kind. This work introduces a classification of permutations based on their number of \textbf{cds}-eligible contexts. In prior work an object called the strategic pile of a permutation was discovered and shown to provide an efficient measure of the non-\textbf{cds}-sortability of a permutation. Focusing on the classification of permutations with maximal strategic pile, a complete characterization is given when the number of \textbf{cds}-eligible contexts is close to maximal as well as when the number of eligible contexts is minimal. A group action that preserves the number of \textbf{cds}-eligible contexts of a permutation provides, via the orbit-stabilizer theorem, enumerative results regarding the number of permutations with maximal strategic pile and a given number of \textbf{cds}-eligible contexts. Prior work introduced a natural two-person game on permutations that are not \textbf{cds}-sortable. The decision problem of which player has a winning strategy in a particular instance of the game appears to be of high computational complexity. Extending prior results, this work presents new conditions for player ONE to have a winning strategy in this combinatorial game.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源