论文标题

Ehresmann理论和分区单型

Ehresmann theory and partition monoids

论文作者

East, James, Gray, Robert D.

论文摘要

本文涉及分区中的Ehresmann结构honoid $ p_x $。由于$ p_x $包含同一基础集合$ x $上的对称和双对称性逆,因此自然包含两个下monoids的同志的半武器。我们表明,其中一个半层次导致$ p_x $的Ehresmann结构,而另一个则没有。我们探讨了这一点(结构/组合和表示理论)的一些后果,尤其是左,右和两侧限制性下monoi类型。新的结果与已知的结果相关的关系形成鲜明对比,并且出现了许多有趣的二元性,这是源于反向半群的传统哲学作为部分对称的模型(Vagner和Preston)的模型(Vagner和Preston)或阻止对称性(Fitzgerald和Leech):“子集之间的冲突”对关系之间的相互作用”。我们还考虑了一些相关的图表单体,包括rok分区单杆,并陈述了几个开放问题。

This article concerns Ehresmann structures in the partition monoid $P_X$. Since $P_X$ contains the symmetric and dual symmetric inverse monoids on the same base set $X$, it naturally contains the semilattices of idempotents of both submonoids. We show that one of these semilattices leads to an Ehresmann structure on $P_X$ while the other does not. We explore some consequences of this (structural/combinatorial and representation theoretic), and in particular characterise the largest left-, right- and two-sided restriction submonoids. The new results are contrasted with known results concerning relation monoids, and a number of interesting dualities arise, stemming from the traditional philosophies of inverse semigroups as models of partial symmetries (Vagner and Preston) or block symmetries (FitzGerald and Leech): "surjections between subsets" for relations become "injections between quotients" for partitions. We also consider some related diagram monoids, including rook partition monoids, and state several open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源