论文标题

双极磁性半导体行为:一种新的自旋过滤器的自旋材料

Bipolar Magnetic Semiconducting Behavior in VNbRuAl: A New Spintronic Material for Spin Filters

论文作者

Nag, Jadupati, Rani, Deepika, Kangsabanik, Jiban, Babu, P. D., Suresh, K. G., Alam, Aftab

论文摘要

我们报告了一类新的自旋材料的理论预测,即双极磁性半导体(BMS),这也得到了我们的实验数据的支持。 BMS获得了独特的带状结构,该结构具有不等的带隙,用于向上和向下的通道,因此对于可调旋转传输的应用(例如旋转过滤器)非常有用。 BMS中的价带(VB)和传统带(CB)通过相反的自旋通道接近费米水平,因此有助于实现可逆的自旋极化,这是通过施加的栅极电压可控制的。我们报告了第四纪的旋转器合金VNBRUAL,以完全具有BMS的频带结构。发现合金在Limgpdsn原型结构中结晶(空间群$ f \ bar {4} 3M $),带有b $ 2 $疾病和晶格参数6.15Å。电阻率和霍尔测量值显示了两个通道半导体行为以及负磁电阻(MR)的准线性依赖性,表明可能的半导体性质。有趣的是,VNBRUAL还显示出具有消失的净磁化(m $ _s $$ \ sim $ $ 10^{ - 3} $ $ $ $ $ $ $μ_b/f.u. $)和明显高订购温度($> 900 $ k)的完全补偿的铁磁性(FCF)行为。与常规的FCF不同,在这种情况下,消失的力矩似乎是远距离抗铁磁(AFM)排序和晶体固有的B2疾病的组合的结果。这项研究打开了寻找AFM Spintronics的一类材料的可能性,在基本和应用方面具有重要意义。

We report the theoretical prediction of a new class of spintronic materials, namely bipolar magnetic semiconductor (BMS), which is also supported by our experimental data. BMS acquires a unique band structure with unequal band gaps for spin up and down channels, and thus are useful for tunable spin transport based applications such as spin filters. The valence band (VB) and conduction band (CB) in BMS approach the Fermi level through opposite spin channels, and hence facilitate to achieve reversible spin polarization which are controllable via applied gate voltage. We report the quaternary Heusler alloy VNbRuAl to exactly possess the band structure of BMS. The alloy is found to crystallize in LiMgPdSn prototype structure (space group $F\bar{4}3m$) with B$2$ disorder and lattice parameter 6.15 Å. The resistivity and Hall measurements show a two channel semiconducting behavior and a quasi linear dependence of negative magneto resistance (MR) indicating the possible semiconducting nature. Interestingly, VNbRuAl also shows a fully compensated ferrimagnetic (FCF) behavior with vanishing net magnetization (m$_s$$\sim$ $10^{-3}$ $μ_B/f.u.$) and significantly high ordering temperature ($> 900$ K). Unlike conventional FCF, vanishing moment in this case appears to be the result of a combination of long range antiferromagnetic (AFM) ordering and the inherent B2 disorder of the crystal. This study opens up the possibility of finding a class of materials for AFM spintronics, with great significance both from fundamental and applied fronts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源