论文标题
聚合物信息学:当前状态和关键下一步
Polymer Informatics: Current Status and Critical Next Steps
论文作者
论文摘要
基于人工智能(AI)的方法开始影响人类生活,科学和技术的几个领域。聚合物信息学是一个这样的领域,其中AI和机器学习(ML)工具用于聚合物的有效开发,设计和发现。替代模型对可用的聚合物数据进行了培训,以进行即时财产预测,从而筛选有希望的有特定目标属性需求的有希望的聚合物候选者。正在使用统计手段探索有关创建目标聚合物的综合性和潜在(复古)合成步骤的问题。数据驱动的策略正在探索由小规模和大尺度的聚合物的非凡化学和物理多样性引起的独特挑战。聚合物信息学的其他主要障碍是缺乏精心策划和有组织的数据的广泛可用性,以及创建机器可读表示的方法,不仅可以捕获复杂的聚合物情况的结构,还可以捕获合成和处理条件。解决反问题的方法,其中正在研究使用符合应用程序目标的高级AI算法提出的聚合物建议。随着新兴聚合物信息学生态系统的成熟并变得综合的各个部分,可以提高效率,加速发现和提高生产率。在这里,我们回顾了此聚合物信息学生态系统的新兴组成部分,并讨论了即将到来的挑战和机遇。
Artificial intelligence (AI) based approaches are beginning to impact several domains of human life, science and technology. Polymer informatics is one such domain where AI and machine learning (ML) tools are being used in the efficient development, design and discovery of polymers. Surrogate models are trained on available polymer data for instant property prediction, allowing screening of promising polymer candidates with specific target property requirements. Questions regarding synthesizability, and potential (retro)synthesis steps to create a target polymer, are being explored using statistical means. Data-driven strategies to tackle unique challenges resulting from the extraordinary chemical and physical diversity of polymers at small and large scales are being explored. Other major hurdles for polymer informatics are the lack of widespread availability of curated and organized data, and approaches to create machine-readable representations that capture not just the structure of complex polymeric situations but also synthesis and processing conditions. Methods to solve inverse problems, wherein polymer recommendations are made using advanced AI algorithms that meet application targets, are being investigated. As various parts of the burgeoning polymer informatics ecosystem mature and become integrated, efficiency improvements, accelerated discoveries and increased productivity can result. Here, we review emergent components of this polymer informatics ecosystem and discuss imminent challenges and opportunities.