论文标题
在叠加状态的极限
On the Limit of Superposition States
论文作者
论文摘要
在本文中,我们研究了在张量代数上的叠加态家族的结构。所考虑状态的相关函数是通过在c $^ast $ -Algebras(所谓的Schur内核)双重的新型确定内核中描述的。主要是,我们在任意局部有限的图表上表明了叠加态净状态的限制状态的存在。此外,我们表明,在多维整数lattice $ \ mathbb {z}^ν$的情况下,这种有限状态具有混合属性和$α$混合属性。
In this paper, we study the structure of a family of superposition states on tensor algebras. The correlation functions of the considered states are described through a new kind of positive definite kernels valued in the dual of C$^\ast$-algebras, so-called Schur kernels. Mainly, we show the existence of the limiting state of a net of superposition states over an arbitrary locally finite graph. Furthermore, we show that this limiting state enjoys a mixing property and an $α$-mixing property in the case of the multi-dimensional integer lattice $\mathbb{Z}^ν$.