论文标题
对进化神经建筑搜索的自学代表性学习
Self-supervised Representation Learning for Evolutionary Neural Architecture Search
论文作者
论文摘要
最近提出的神经体系结构搜索(NAS)算法采用神经预测因子来加速建筑搜索。神经预测因子准确预测神经结构的性能指标的能力对NAS至关重要,而对神经预测变量的训练数据集则是耗时的。如何使用少量训练数据获得具有高预测准确性的神经预测因子是基于神经预测变量NAS的核心问题。在这里,我们首先设计了一种新的架构编码方案,该方案克服了现有基于向量的体系结构编码方案的缺点,以计算神经体系结构的图编辑距离。为了增强神经预测因子的预测性能,我们从不同的角度从不同的角度设计了两种自我监督的学习方法,以预先培训嵌入神经预测因子的部分的体系结构,以产生对神经体系结构的有意义的表示。第一个是训练精心设计的两个分支图神网络模型,以预测两个输入神经体系结构的图编辑距离。第二种方法的灵感来自普遍的对比学习,我们提出了一种新的对比学习算法,该学习算法利用中心特征向量作为代理,将正面对与负面对形成对比。实验结果表明,与受监督的训练样本相比,预训练的神经预测因子可以实现可比或优越的性能。当将预先训练的神经预测因子与进化NAS算法集成时,我们在NASBENCH-101和NASBENCH201基准上实现了最先进的性能。
Recently proposed neural architecture search (NAS) algorithms adopt neural predictors to accelerate the architecture search. The capability of neural predictors to accurately predict the performance metrics of neural architecture is critical to NAS, and the acquisition of training datasets for neural predictors is time-consuming. How to obtain a neural predictor with high prediction accuracy using a small amount of training data is a central problem to neural predictor-based NAS. Here, we firstly design a new architecture encoding scheme that overcomes the drawbacks of existing vector-based architecture encoding schemes to calculate the graph edit distance of neural architectures. To enhance the predictive performance of neural predictors, we devise two self-supervised learning methods from different perspectives to pre-train the architecture embedding part of neural predictors to generate a meaningful representation of neural architectures. The first one is to train a carefully designed two branch graph neural network model to predict the graph edit distance of two input neural architectures. The second method is inspired by the prevalently contrastive learning, and we present a new contrastive learning algorithm that utilizes a central feature vector as a proxy to contrast positive pairs against negative pairs. Experimental results illustrate that the pre-trained neural predictors can achieve comparable or superior performance compared with their supervised counterparts with several times less training samples. We achieve state-of-the-art performance on the NASBench-101 and NASBench201 benchmarks when integrating the pre-trained neural predictors with an evolutionary NAS algorithm.