论文标题

使用肠神经系统图像自动慢性退行性疾病鉴定

Automatic Chronic Degenerative Diseases Identification Using Enteric Nervous System Images

论文作者

Felipe, Gustavo Z., Zanoni, Jacqueline N., Sehaber-Sierakowski, Camila C., Bossolani, Gleison D. P., Souza, Sara R. G., Flores, Franklin C., Oliveira, Luiz E. S., Pereira, Rodolfo M., Costa, Yandre M. G.

论文摘要

最近在肠神经系统上完成的研究表明,慢性退行性疾病会影响肠神经胶质细胞(EGC),因此,能够识别能够识别EGC是否受这些类型疾病影响的识别方法的发展可能有助于其诊断。在这项工作中,我们建议使用模式识别和机器学习技术来评估是否从健康的个体中获得给定的动物EGC图像,还是通过慢性退行性疾病的影响。在拟议的方法中,我们通过手工制作的功能和基于深度学习的技术(也称为非手工制作的功能)执行了分类任务。手工制作的特征是使用纹理描述符(例如本地二进制图案(LBP))从ECG图像的纹理内容获得的。此外,该方法中采用的表示学习技术基于不同的卷积神经网络(CNN)体系结构,例如Alexnet和VGG16,具有和没有转移学习。还通过晚期融合技术评估了手工制作和非手工制作功能之间的互补性。实验中使用的EGC图像的数据集也是本文的贡献,由三种不同的慢性退行性疾病组成:癌症,糖尿病和类风湿关节炎。通过统计分析支持的实验结果表明,所提出的方法可以将健康细胞与患者的识别率分别为89.30%(类风湿关节炎),98.45%(癌症)和95.13%(糖尿病Mellitus),通过结合获得两种功能的分类场景来实现。

Studies recently accomplished on the Enteric Nervous System have shown that chronic degenerative diseases affect the Enteric Glial Cells (EGC) and, thus, the development of recognition methods able to identify whether or not the EGC are affected by these type of diseases may be helpful in its diagnoses. In this work, we propose the use of pattern recognition and machine learning techniques to evaluate if a given animal EGC image was obtained from a healthy individual or one affect by a chronic degenerative disease. In the proposed approach, we have performed the classification task with handcrafted features and deep learning based techniques, also known as non-handcrafted features. The handcrafted features were obtained from the textural content of the ECG images using texture descriptors, such as the Local Binary Pattern (LBP). Moreover, the representation learning techniques employed in the approach are based on different Convolutional Neural Network (CNN) architectures, such as AlexNet and VGG16, with and without transfer learning. The complementarity between the handcrafted and non-handcrafted features was also evaluated with late fusion techniques. The datasets of EGC images used in the experiments, which are also contributions of this paper, are composed of three different chronic degenerative diseases: Cancer, Diabetes Mellitus, and Rheumatoid Arthritis. The experimental results, supported by statistical analysis, shown that the proposed approach can distinguish healthy cells from the sick ones with a recognition rate of 89.30% (Rheumatoid Arthritis), 98.45% (Cancer), and 95.13% (Diabetes Mellitus), being achieved by combining classifiers obtained both feature scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源