论文标题

从数据到减少订购模型,通过力矩匹配

From data to reduced-order models via moment matching

论文作者

Burohman, Azka Muji, Besselink, Bart, Scherpen, Jacquelien M. A., Camlibel, M. Kanat

论文摘要

本文提出了一种用于数据驱动的插值模型还原的新方法。使用所谓的数据信息视角,我们定义了一个框架,该框架仅基于时间域输入输出数据在给定(可能是复杂的)插值点计算,而无需明确识别高阶系统。取而代之的是,通过表征所有解释数据的系统集,提供了必要的和充分的条件,在此集合中,所有系统在给定的插值点上共享同一时刻。此外,这些条件允许明确计算这些时刻。然后,通过采用经典有理插值方法的变体来得出降低的模型。还讨论了将匹配模型降低与规定的极点匹配的条件作为获得稳定的还原模型的一种手段。电路的一个示例说明了此框架。

A new method for data-driven interpolatory model reduction is presented in this paper. Using the so-called data informativity perspective, we define a framework that enables the computation of moments at given (possibly complex) interpolation points based on time-domain input-output data only, without explicitly identifying the high-order system. Instead, by characterizing the set of all systems explaining the data, necessary and sufficient conditions are provided under which all systems in this set share the same moment at a given interpolation point. Moreover, these conditions allow for explicitly computing these moments. Reduced-order models are then derived by employing a variation of the classical rational interpolation method. The condition to enforce moment matching model reduction with prescribed poles is also discussed as a means to obtain stable reduced-order models. An example of an electrical circuit illustrates this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源