论文标题
来自TransTront的Markov链的近似统一的3设计
Approximate Unitary 3-Designs from Transvection Markov Chains
论文作者
论文摘要
统一$ k $ - 设计是单一矩阵的概率集合,其第一个$ k $统计的时刻与赋予HAAR措施的完整统一集团的统计矩相匹配。在先前的工作中,我们证明了经典$ \ mathbb {z} _4 $ -Linear kerdock代码的自动形态组将映射到一个单一$ 2 $ -DESIGEN,该图通过图形态建立了新的经典量词连接。在本文中,我们构建了一个马尔可夫流程,该过程将这种kerdock $ 2 $ - 设计与符号转向反向进行混合在一起,并表明此过程产生了$ε$ - $ -Approximate unitaimate $ 3 $ -DESIGN。我们构造了一个图表,其顶点是Pauli矩阵,并且仅当它们上下班时,两个顶点通过定向边缘连接。在此Pauli图的顶点,边缘和非边缘上具有传递性的单一合奏是一个确切的$ 3 $ - 设计,而我们流程的固定分布具有此属性。关于Kerdock代码的对称性,Pauli图具有两种类型的边缘。 Kerdock $ 2 $ -DESIGN混合了相同类型的边缘,而TransVections混合了类型。更确切地说,在$ m $ Qubits上,过程样本$ o(\ log(n^5/ε))$随机转换,其中$ n = 2^m $,然后是随机的kerdock $ 2 $ -DESIGN元素和随机的Pauli矩阵。因此,协议的简单性可能使其对多种应用程序有吸引力。从硬件的角度来看,$ 2 $ qubit的转换恰好映射到Mølmer-Sørensen大门,该大门构成了本机$ 2 $ qubit的操作,用于捕获量子量子计算机。因此,可能可以扩展我们的工作,以构建仅涉及此类$ 2 $ qubit Transvections的大约3美元的设计。
Unitary $k$-designs are probabilistic ensembles of unitary matrices whose first $k$ statistical moments match that of the full unitary group endowed with the Haar measure. In prior work, we showed that the automorphism group of classical $\mathbb{Z}_4$-linear Kerdock codes maps to a unitary $2$-design, which established a new classical-quantum connection via graph states. In this paper, we construct a Markov process that mixes this Kerdock $2$-design with symplectic transvections, and show that this process produces an $ε$-approximate unitary $3$-design. We construct a graph whose vertices are Pauli matrices, and two vertices are connected by directed edges if and only if they commute. A unitary ensemble that is transitive on vertices, edges, and non-edges of this Pauli graph is an exact $3$-design, and the stationary distribution of our process possesses this property. With respect to the symmetries of Kerdock codes, the Pauli graph has two types of edges; the Kerdock $2$-design mixes edges of the same type, and the transvections mix the types. More precisely, on $m$ qubits, the process samples $O(\log(N^5/ε))$ random transvections, where $N = 2^m$, followed by a random Kerdock $2$-design element and a random Pauli matrix. Hence, the simplicity of the protocol might make it attractive for several applications. From a hardware perspective, $2$-qubit transvections exactly map to the Mølmer-Sørensen gates that form the native $2$-qubit operations for trapped-ion quantum computers. Thus, it might be possible to extend our work to construct an approximate $3$-design that only involves such $2$-qubit transvections.