论文标题
色散理论,重新审视
Theory of the Chromatic Dispersion, Revisited
论文作者
论文摘要
由于k矢量或相位对波长的依赖性,我们得出了有效的无穷大的色散顺序的一般分析表达式。此外,我们确定与色散顺序相关的多项式和递归关系,并类似于广义的LAH和LAGUERRE转换。此外,我们明确给出第10阶的分散项,并可视化材料,光栅和棱镜对压缩机以及空心核心光子抗谐振纤维的色色散。这些简单的公式适用于材料分散,压缩机,担架,波导以及任何其他已知频率依赖性相。
We derive general analytic expressions for the chromatic dispersion orders valid to infinity, due to the k vector or phase ϕ dependence on the wavelength. Additionally, we identify polynomials and recursion relations associated with the chromatic dispersion orders and draw analogy to the generalized Lah and Laguerre transformations. Further, we give explicitly the dispersion terms to the 10th order and visualize the chromatic dispersion for material, grating and prism-pair compressors and hollow-core photonic anti-resonant fiber. These simple formulas are applicable for material dispersion, compressors, stretchers, waveguides, and any other type of known frequency-dependent phase.