论文标题
超导体 - 抗抗铁磁铁模式中的quasiperiodic关键性和自旋三个超导性
Quasiperiodic criticality and spin-triplet superconductivity in superconductor-antiferromagnet moire patterns
论文作者
论文摘要
长期以来,已知二甲体状态是探索外来现象的潜在平台,意识到有序固体和无序物质之间的复杂中点。尤其是,准膜结构是工程师关键波形的有前途的游乐场,这是工程师外来相关状态的强大起点。在这里,我们表明,托管抗铁磁性和旋转弹性超导的准调节的系统,正如原子链在扭曲的范德华材料中所实现的那样,构成了耦合强度的局部化转移过渡。与这种过渡相关的是,我们证明了任意不固定势的强大准静脉临界点的出现,这似乎是用于旋转弹性超导性和抗铁磁性的一般相对权重。我们表明,剩余电子相互作用的包含导致出现的自旋三个超导状态,该状态在Quasiperiodic临界点附近得到显着增强。我们的结果提出了Quasiperiodicity作为一种强大的旋钮,以设计强大的超导状态,为人工设计的非常规超导体提供了另一种途径。
Quasiperiodicity has long been known to be a potential platform to explore exotic phenomena, realizing an intricate middle point between ordered solids and disordered matter. In particular, quasiperiodic structures are promising playgrounds to engineer critical wavefunctions, a powerful starting point to engineer exotic correlated states. Here we show that systems hosting a quasiperiodic modulation of antiferromagnetism and spin-singlet superconductivity, as realized by atomic chains in twisted van der Waals materials, host a localization-delocalization transition as a function of the coupling strength. Associated with this transition, we demonstrate the emergence of a robust quasiperiodic critical point for arbitrary incommensurate potentials, that appears for generic relative weights of the spin-singlet superconductivity and antiferromagnetism. We show that the inclusion of residual electronic interactions leads to an emergent spin-triplet superconducting state, that gets dramatically enhanced at the vicinity of the quasiperiodic critical point. Our results put forward quasiperiodicity as a powerful knob to engineer robust superconducting states, providing an alternative pathway towards artificially designed unconventional superconductors.