论文标题
金茨堡 - 兰道能量和奇异点在产生的跨场中的放置
Ginzburg-Landau energy and placement of singularities in generated cross fields
论文作者
论文摘要
跨场的生成通常被用作构建块结构四边形网格的基础,并且场奇异性对所得网格的结构产生了关键的影响。在本文中,我们将Ginzburg-Landau跨场生成方法扩展了新的配方,使用户可以强加内在的奇异性。跨场是通过使用局部二次约束的线性目标函数优化计算的。该方法包括将奇异性固定在计算域中的小孔中,并在其边界上具有特定的程度条件,从而导致钻孔域上的非明显跨场。我们还提出了一种通过解决Neumann线性问题来计算这些跨场在穿孔域上这些跨场的Ginzburg-Landau能量的方法。这种能量会收敛到金茨堡 - 兰道的能量,因为epsilon和孔的半径往往为零。为了获得有关内部奇异性程度总和的见解,我们给出:(i)将金茨堡 - landau能量扩展到分段平滑域,以识别边界奇异性的位置和程度,以及(ii)对内部构图的poincaré-hopf理论的解释。
Cross field generation is often used as the basis for the construction of block-structured quadrangular meshes, and the field singularities have a key impact on the structure of the resulting meshes. In this paper, we extend Ginzburg-Landau cross field generation methods with a new formulation that allows a user to impose inner singularities. The cross field is computed via the optimization of a linear objective function with localized quadratic constraints. This method consists in fixing singularities in small holes drilled in the computational domain with specific degree conditions on their boundaries, which leads to non-singular cross fields on the drilled domain. We also propose a way to calculate the Ginzburg-Landau energy of these cross fields on the perforated domain by solving a Neumann linear problem. This energy converges to the energy of the Ginzburg-Landau functional as epsilon and the radius of the holes tend to zero. To obtain insights concerning the sum of the inner singularity degrees, we give: (i) an extension of the Ginzburg-Landau energy to the piecewise smooth domain allowing to identify the positions and degrees of the boundary singularities, and (ii) an interpretation of the Poincaré-Hopf theorem focusing on internal singularities.