论文标题

对锂离子电池中固体电解质间相的界面影响

Interfacial Effects on Solid Electrolyte Interphase in Lithium-ion Batteries

论文作者

Ahmad, Zeeshan, Venturi, Victor, Hafiz, Hasnain, Viswanathan, Venkatasubramanian

论文摘要

在界面上存在钝化层是实现现代锂离子(锂离子)电池的主要因素。它们的特性决定了电池的循环寿命,性能和安全性。一种特殊情况是固体电解质间相(SEI),这是由于不稳定性和随后在阳极表面的电解质分解而形成的异质多组分膜。 SEI充当钝化层,阻碍了进一步的电解质瓦解,这对库仑效率有害。在这项工作中,我们使用第一原理模拟研究氟化锂(LIF)和碳酸锂(Li $ _2 $ CO $ _3 $)之间界面的动力和电子性能,这是带有有机液体电解质的Li-Ion电池中的两个常见的SEI组件。我们发现这些组件之间的连贯界面将它们的应变限制在3%以下。我们发现该界面会导致Frenkel缺陷的形成能量大幅增加,从而在LIF中产生了LIF的空缺,而Li $ _2 $ co $ _3 $负责运输的空缺。另一方面,LI间隙跳跃屏障从所考虑的界面结构中的$ 0.3 $ ev li $ _2 $ _3 $ _3 $ _3 $或0.22 $ ev缩小,表明了界面的有利作用。在异质性SEI中控制这两种效应对于维持SEI中的快速离子传输至关重要。我们进一步执行了CAR-Parrinello分子动力学模拟,以探索界面结构中的液传导,从而揭示了界面附近的增强的液化扩散。了解多相SEI的界面特性代表了实现下一代电池的重要边界。

The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphase (SEI), a heterogeneous multi-component film formed due to the instability and subsequent decomposition of the electrolyte at the surface of the anode. The SEI acts as a passivating layer that hinders further electrolyte disintegration, which is detrimental to the Coulombic efficiency. In this work, we use first-principles simulations to investigate the kinetic and electronic properties of the interface between lithium fluoride (LiF) and lithium carbonate (Li$_2$CO$_3$), two common SEI components present in Li-ion batteries with organic liquid electrolytes. We find a coherent interface between these components that restricts the strain in each of them to below 3%. We find that the interface causes a large increase in the formation energy of the Frenkel defect, generating Li vacancies in LiF and Li interstitials in Li$_2$CO$_3$ responsible for transport. On the other hand, the Li interstitial hopping barrier is reduced from $0.3$ eV in bulk Li$_2$CO$_3$ to $0.10$ or $0.22$ eV in the interfacial structure considered, demonstrating the favorable role of the interface. Controlling these two effects in a heterogeneous SEI is crucial for maintaining fast ion transport in the SEI. We further perform Car-Parrinello molecular dynamics simulations to explore Li ion conduction in our interfacial structure, which reveal an enhanced Li ion diffusion in the vicinity of the interface. Understanding the interfacial properties of the multiphase SEI represents an important frontier to enable next-generation batteries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源