论文标题
对Aquila分子云中CO选择性解离引起的不同区域的研究
Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud
论文作者
论文摘要
目标。我们通过比较Protostellar-Prostellar核的物理参数和不同的区域与光解离区域中的CO同位素分布来研究选择性解离在星形成过程中的作用。我们试图了解恒星形成区域的进化年龄与选择性解离的效果之间是否存在更好的联系 方法。 $ \ rm ^{12} co $,$ \ rm ^{13} co $和$ \ rm c ^{18} o $(J = 1-0)发射线的宽场观察用于研究正在进行的恒星形成活动中的星星形成活动,并在含量$ m和250 $ m和250 $ m和250 $ m的材料中均与70 $ $ m的材料一起研究核心的进化年龄。 结果。 Protostellar-Prostellar核心在最高$ \ rm c^{18} o $列密度及其进化年龄的位置发现,其位置在其位置上的发射率增加了70美元$ M/250 $ M/250 $ M $ M的发射率。核心的进化年龄也可以从$ \ rm^{13} co $ vess $ \ rm c^{18} o $丰度比率下进行,该比率随着$ \ rm c^{18} o $ $ $ $ $列的列密度而降低。原始质量已经估计了九个代表性的星形形成区域,该区域的原始质量与综合的70 $ $ $ M M磁通密度息息相关。 Similarly, the $ X_{\rm ^{13}CO}$/$X_{\rm C^{18}O}$ implying the dissociation rate for these regions correlates with the 70$μ$m/250$μ$m flux density ratio and reflects the evolutionary age of the star formation activity.
Aims. We investigate the role of selective dissociation in the process of star formation by comparing the physical parameters of protostellar-prestellar cores and the distinct regions with the CO isotope distributions in photodissociation regions. We seek to understand whether there is a better connection between the evolutionary age of star forming regions and the effect of selective dissociation Methods. Wide-field observations of the $\rm ^{12}CO$, $\rm ^{13}CO$, and $\rm C^{18}O$ ( J = 1 - 0) emission lines are used to study the ongoing star formation activity in the Aquila molecular region, and the 70 $μ$m and 250 $μ$m data are used to describe the heating of the surrounding material and as an indicator of the evolutionary age of the core. Results. The protostellar-prestellar cores are found at locations with the highest $\rm C^{18}O$ column densities and their increasing evolutionary age would relate to an increasing 70$μ$m/250$μ$m emission ratio at their location. An evolutionary age of the cores may also follow from the $\rm ^{13}CO$ versus $\rm C^{18}O$ abundance ratio, which decreases with increasing $\rm C^{18}O$ column densities. The original mass has been estimated for nine representative star formation regions and the original mass of the region correlated well with the integrated 70 $μ$m flux density. Similarly, the $ X_{\rm ^{13}CO}$/$X_{\rm C^{18}O}$ implying the dissociation rate for these regions correlates with the 70$μ$m/250$μ$m flux density ratio and reflects the evolutionary age of the star formation activity.