论文标题

HHAR-NET:使用神经网络的分层人类活动识别

HHAR-net: Hierarchical Human Activity Recognition using Neural Networks

论文作者

Fazli, Mehrdad, Kowsari, Kamran, Gharavi, Erfaneh, Barnes, Laura, Doryab, Afsaneh

论文摘要

使用智能和可穿戴设备中内置传感器的活动识别为理解和检测野外人类行为的绝佳机会提供了更全面的看法,并对个人的健康和福祉进行了更全面的看法。已将许多计算方法应用于传感器流以识别不同的日常活动。但是,大多数方法无法捕获隐藏在人类行为中的不同活动。同样,随着活动数量的增加,模型的性能开始降低。这项研究旨在通过神经网络建立分层分类,以根据不同水平的抽象来识别人类活动。我们在超声数据集上评估我们的模型;收集在野外的数据集,并包含来自智能手机和智能手表的数据。我们使用两级层次结构,共有六个互斥标签,即“躺下”,“坐着”,“站在”,“行走”,“跑步”,“跑步”和“骑自行车”,分为“固定”和“非机构”。结果表明,我们的模型可以在六个标签上识别出95.8%的精度和92.8%的低级活动(固定/非平稳性)。这比我们表现最好的基线比最佳的3%。

Activity recognition using built-in sensors in smart and wearable devices provides great opportunities to understand and detect human behavior in the wild and gives a more holistic view of individuals' health and well being. Numerous computational methods have been applied to sensor streams to recognize different daily activities. However, most methods are unable to capture different layers of activities concealed in human behavior. Also, the performance of the models starts to decrease with increasing the number of activities. This research aims at building a hierarchical classification with Neural Networks to recognize human activities based on different levels of abstraction. We evaluate our model on the Extrasensory dataset; a dataset collected in the wild and containing data from smartphones and smartwatches. We use a two-level hierarchy with a total of six mutually exclusive labels namely, "lying down", "sitting", "standing in place", "walking", "running", and "bicycling" divided into "stationary" and "non-stationary". The results show that our model can recognize low-level activities (stationary/non-stationary) with 95.8% accuracy and overall accuracy of 92.8% over six labels. This is 3% above our best performing baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源