论文标题
修改的非线性schrodinger方程模拟流氓波的形成良好
Well-posedness for a modified nonlinear Schrodinger equation modeling the formation of rogue waves
论文作者
论文摘要
该行上非线性shcrodinger方程(MNL)的高阶修改的Cauchy问题显示在具有指数$ \ ge 0 $的Sobolev空间中占有良好的范围。通过证明相关的积分运算符是在布尔加因空间上的收缩来实现此结果,该收缩已改编成方程中存在的特定线性符号。通过使用微局部分析和新的三联估计来证明该术语。
The Cauchy problem for a higher order modification of the nonlinear Shcrodinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent $\ge 0$. This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. the ctraction is proved by using microlocal analysis and a new trilinear estimate.