论文标题
多场,快速转移通货膨胀溶液
The Multi-Field, Rapid-Turn Inflationary Solution
论文作者
论文摘要
在确定缓慢滚动,缓慢转向,多场膨胀是否可能发生的潜在和场空间几何形状上有众所周知的标准。但是,即使这是一个最近引起人们兴趣,缓慢的,快速通货膨胀的话题,仅在两个领域的限制中才有这样的标准。在这项工作中,我们将两场,快速的通货膨胀吸引子概括为任意数量的田地。我们量化了一个极限,我们将其进行了极端转弯,其中可以有效地找到快速转移的解决方案并开发出这样做的方法。特别是,当电势的协变量与梯度与梯度密切相位时,就会出现简单的结果 - 我们认为这种情况很常见,并且在两场双曲线的几何形状中我们证明了仿制药。我们在几种已知的快速转变模型上验证我们的方法,并搜索两个IIA型构造中的快速轨迹。我们第一次能够有效地搜索这些解决方案,甚至排除一个潜力的缓慢滚动,快速转移的通胀。
There are well-known criteria on the potential and field-space geometry for determining if slow-roll, slow-turn, multi-field inflation is possible. However, even though it has been a topic of much recent interest, slow-roll, rapid-turn inflation only has such criteria in the restriction to two fields. In this work, we generalize the two-field, rapid-turn inflationary attractor to an arbitrary number of fields. We quantify a limit, which we dub extreme turning, in which rapid-turn solutions may be found efficiently and develop methods to do so. In particular, simple results arise when the covariant Hessian of the potential has an eigenvector in close alignment with the gradient -- a situation we find to be common and we prove generic in two-field hyperbolic geometries. We verify our methods on several known rapid-turn models and search two type-IIA constructions for rapid-turn trajectories. For the first time, we are able to efficiently search for these solutions and even exclude slow-roll, rapid-turn inflation from one potential.