论文标题
有机半导体中的二维孔气
Two-dimensional hole gas in organic semiconductors
论文作者
论文摘要
量子在固态界面上机械限制的高导电金属气体是探索非平凡的电子状态的理想平台,这些平台在散装材料中原本无法访问。尽管在常规半导体界面中已经实现了二维电子气体(2DEG),但仍有限制的二维孔气(2DHG)的示例,即2DEG的反模拟。在这里,我们报告了使用离子液体结合使用的溶液处理有机半导体中2DHG的观察结果。高迁移率有机半导体的分子平坦的单晶体是无缺陷的界面,可促进高密度孔的二维限制。明显的低板电阻为6 k $ω$,高孔气体密度为10 $^{14} $ cm $^{ - 2} $在环境压力下导致金属 - 绝缘体过渡。有机半导体中测得的退化孔提供了一个广泛的机会,可以使用分子设计的杂粒面来量身定制低维电子状态。
A highly conductive metallic gas that is quantum mechanically confined at a solid-state interface is an ideal platform to explore nontrivial electronic states that are otherwise inaccessible in bulk materials. Although two-dimensional electron gas (2DEG) has been realized in conventional semiconductor interfaces, examples of two-dimensional hole gas (2DHG), which is the counter analogue of 2DEG, are still limited. Here, we report the observation of a 2DHG in solution-processed organic semiconductors in conjunction with an electric double-layer using ionic liquids. A molecularly flat single crystal of high mobility organic semiconductors serves as a defect-free interface that facilitates two-dimensional confinement of high-density holes. Remarkably low sheet resistance of 6 k$Ω$ and high hole gas density of 10$^{14}$ cm$^{-2}$ result in a metal-insulator transition at ambient pressure. The measured degenerated holes in the organic semiconductors provide a broad opportunity to tailor low-dimensional electronic states using molecularly engineered heterointerfaces.