论文标题

对爱因斯坦歧管和应用的估计值

Hitting estimates on Einstein manifolds and applications

论文作者

Choi, Beomjun, Haslhofer, Robert

论文摘要

我们将Benjamini-Pemantle-Peres估计与击中概率和Martin的能力相关的估计值与下面有RICCI曲率的歧管的设置相关。随着我们获得的应用:(1)对布朗尼运动接近ricci-flat流形的高曲率部分的可能性的尖锐估计,(2)证明了纳伯未公开的纳伯定理的证据,即每个不收集的ricci-flat限制ricci-flat的限制是依次的范围,即在两种方程式上的弱点,即在eInstein方程上的较弱的范围(3)有效的跨度(3)有效的互动(3)有效的互动(3)有效的互动(3)有效的互动,有效互动(3) RICCI曲率和正渐近体积比。对于具有双向RICCI边界的歧管和Einstein歧管的歧管,我们还获得了(1)和(2)的概括。

We generalize the Benjamini-Pemantle-Peres estimate relating hitting probability and Martin capacity to the setting of manifolds with Ricci curvature bounded below. As applications we obtain: (1) a sharp estimate for the probability that Brownian motion comes close to the high curvature part of a Ricci-flat manifold, (2) a proof of an unpublished theorem of Naber that every noncollapsed limit of Ricci-flat manifolds is a weak solution of the Einstein equations, (3) an effective intersection estimate for two independent Brownian motions on manifolds with non-negative Ricci curvature and positive asymptotic volume ratio. We also obtain generalizations of (1) and (2) for the manifolds with two-sided Ricci bounds and Einstein manifolds with nonzero Einstein constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源