论文标题
夹心双毛随机图
Sandwiching biregular random graphs
论文作者
论文摘要
令$ g(n,n,m)$为一个均匀的随机$ m $ - edge子图$ k_ {n,n} $,带有双色$(v_1,v_2)$,其中$ n_i = | v_i | $。给定一个实际数字$ p \在[0,1] $中,以至于$ d_1:= pn_2 $和$ d_2:= pn_1 $是整数,让$ r(n,n,p)$是$ k_ {n,n,n} $的随机子graph,in V_i $ in v_i $ n in v_i $ d_i $ d_i $ $ $ d_i $,$ y $ i y y y $ i y y y y $ i y = 1,2 $ i c.在本文中,我们确定了$ n_1,n_2,p $和$ m $的足够条件,根据该条件,可以将$ g(n,n,m)$嵌入$ r(n,n,n,p)$,反之亦然,概率为$ 1 $。特别是,在均衡的情况下,$ n_1 = n_2 $,我们表明,如果$ p \ gg \ log n/n $和$ 1- p \ gg \ weft(\ log n/n/n/n \ right)^{1/4} $,那么对于某些$ m \ sim pn^2 $,几乎是$ g(n n $ s sy $ g(n) $ p \ gg \ left(\ log^{3} n/n \ right)^{1/4} $和$ 1-p \ gg \ gg \ log n/n $我们具有相反的嵌入。作为扩展名,我们确认Kim--Vu三明治的猜想,其学位的生长速度快于$(n \ log n)^{3/4} $。
Let $G(n,n,m)$ be a uniformly random $m$-edge subgraph of the complete bipartite graph $K_{n,n}$ with bipartition $(V_1, V_2)$, where $n_i = |V_i|$. Given a real number $p \in [0,1]$ such that $d_1 := pn_2$ and $d_2 := pn_1$ are integers, let $R(n,n,p)$ be a random subgraph of $K_{n,n}$ such that every $v \in V_i$ has degree $d_i$, for $i = 1, 2$. In this paper we determine sufficient conditions on $n_1,n_2,p$, and $m$ under which one can embed $G(n,n,m)$ into $R(n,n,p)$ and vice versa with probability tending to $1$. In particular, in the balanced case $n_1 = n_2$, we show that if $p \gg \log n/n$ and $1 - p \gg \left(\log n/n \right)^{1/4}$, then for some $m \sim pn^2$, asymptotically almost surely one can embed $G(n,n,m)$ into $R(n,n,p)$, while for $p \gg \left(\log^{3} n/n\right)^{1/4}$ and $1-p \gg \log n/n$ we have the opposite embedding. As an extension, we confirm the Kim--Vu Sandwich Conjecture for degrees growing faster than $(n \log n)^{3/4}$.