论文标题

下一代人工智能的上下文感知和灵活的神经元实现的自适应认知

Adaptive cognition implemented with a context-aware and flexible neuron for next-generation artificial intelligence

论文作者

Jadaun, Priyamvada, Cui, Can, Liu, Sam, Incorvia, Jean Anne C.

论文摘要

神经形态计算模仿大脑的组织原理,以复制大脑的智力能力。大脑的令人印象深刻的能力是其自适应智力,它使大脑可以“即时”调节其功能,以应对各种不断变化的情况。特别是,大脑显示上下文意识,交叉频率耦合和特征结合的三种自适应和高级智能能力。为了模仿这些自适应认知能力,我们使用磁性天空晶格设计和模拟了一种基于硬件的新型自适应振荡神经元。电荷馈送到神经元中的电流重新配置了Skyrmion晶格,从而调节神经元的状态,动力学及其转移功能“飞行”。这种自适应神经元用于证明三种认知能力,以前在硬件神经元中尚未实现上下文意识和跨频耦合。此外,神经元用于构建自适应人工神经网络(ANN)并对乳腺癌进行上下文感知的诊断。模拟表明,自适应ANN诊断癌症的精度较高,同时从较少的数据中学习速度,并且使用比用于癌症诊断的最新非适应性ANN相比,使用更紧凑,更节能的网络。这项工作进一步描述了基于硬件的自适应神经元如何缓解当代ANN面临的几个关键挑战。现代人需要大量的培训数据,能源和芯片区域,并且特定于任务特定;相反,由自适应神经元建造的基于硬件的ANN显示出从较小的数据集,紧凑的体系结构,能源效率,容忍性耐受性的速度中更快的学习,并可能导致通用人工智能的实现。

Neuromorphic computing mimics the organizational principles of the brain in its quest to replicate the brain's intellectual abilities. An impressive ability of the brain is its adaptive intelligence, which allows the brain to regulate its functions "on the fly" to cope with myriad and ever-changing situations. In particular, the brain displays three adaptive and advanced intelligence abilities of context-awareness, cross frequency coupling and feature binding. To mimic these adaptive cognitive abilities, we design and simulate a novel, hardware-based adaptive oscillatory neuron using a lattice of magnetic skyrmions. Charge current fed to the neuron reconfigures the skyrmion lattice, thereby modulating the neuron's state, its dynamics and its transfer function "on the fly". This adaptive neuron is used to demonstrate the three cognitive abilities, of which context-awareness and cross-frequency coupling have not been previously realized in hardware neurons. Additionally, the neuron is used to construct an adaptive artificial neural network (ANN) and perform context-aware diagnosis of breast cancer. Simulations show that the adaptive ANN diagnoses cancer with higher accuracy while learning faster from smaller amounts of data and using a more compact and energy-efficient network than the state-of-the-art non-adaptive ANNs used for cancer diagnosis. The work further describes how hardware-based adaptive neurons can mitigate several critical challenges facing contemporary ANNs. Modern ANNs require large amounts of training data, energy and chip area and are highly task-specific; conversely, hardware-based ANNs built with adaptive neurons show faster learning from smaller datasets, compact architectures, energy-efficiency, fault-tolerance and can lead to the realization of general artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源