论文标题

共同发电和呼吸分类的半监督自动编码器框架

A semi-supervised autoencoder framework for joint generation and classification of breathing

论文作者

Pastor-Serrano, Oscar, Lathouwers, Danny, Perkó, Zoltán

论文摘要

生物医学信号的主要问题之一是患者特定数据的数量有限,以及记录足够数量的诊断和治疗目的所需的样本所需的大量时间。在这项研究中,我们提出了一个框架,以基于改良的对抗自动编码器(AAE)算法和一维卷积,同时生成和分类生物医学时间序列。我们的工作基于呼吸时间序列,并具有在放射治疗期间捕获呼吸运动的特定动机。首先,我们探讨了使用变异自动编码器(VAE)和AAE算法对个别患者进行呼吸的可能性。我们扩展了AAE算法,以允许联合半监督分类和产生不同类型的信号。为了简化建模任务,我们引入了预处理和后处理的压缩算法,该算法将多维时间序列转换为包含时间和位置值的向量,通过其他神经网络将其转换为时间序列。通过在训练过程中纳入很少的标签样品,我们的模型在与训练集完全不同的数据集中分类了呼吸基线不规则不规则,使其他纯粹的歧视网络的表现优于其他纯粹的歧视网络。据我们所知,提出的框架是第一种用于此类生物医学数据的单个模型中的生成和分类的方法,可以在单个框架内实现计算机辅助诊断和标记样品的增强。

One of the main problems with biomedical signals is the limited amount of patient-specific data and the significant amount of time needed to record the sufficient number of samples needed for diagnostic and treatment purposes. In this study, we present a framework to simultaneously generate and classify biomedical time series based on a modified Adversarial Autoencoder (AAE) algorithm and one-dimensional convolutions. Our work is based on breathing time series, with specific motivation to capture breathing motion during radiotherapy lung cancer treatments. First, we explore the potential in using the Variational Autoencoder (VAE) and AAE algorithms to model breathing from individual patients. We extend the AAE algorithm to allow joint semi-supervised classification and generation of different types of signals. To simplify the modeling task, we introduce a pre-processing and post-processing compressing algorithm that transforms the multi-dimensional time series into vectors containing time and position values, which are transformed back into time series through an additional neural network. By incorporating few labeled samples during training, our model outperforms other purely discriminative networks in classifying breathing baseline shift irregularities from a dataset completely different from the training set. To our knowledge, the presented framework is the first approach that unifies generation and classification within a single model for this type of biomedical data, enabling both computer aided diagnosis and augmentation of labeled samples within a single framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源