论文标题

Flatnet:从无透镜测量的重建朝向逼真的场景重建

FlatNet: Towards Photorealistic Scene Reconstruction from Lensless Measurements

论文作者

Khan, Salman S., Sundar, Varun, Boominathan, Vivek, Veeraraghavan, Ashok, Mitra, Kaushik

论文摘要

无透镜成像已成为通过在传统摄像机中避免笨重的镜头来实现超细胞相机的潜在解决方案。没有聚焦的镜头,无镜头摄像机依靠计算算法来从多路复用测量中恢复场景。但是,当前基于迭代优化的重建算法会产生噪音更大且感知较差的图像。在这项工作中,我们提出了一种基于深度学习的重建方法,从而导致无镜头重建图像质量的数量级提高。我们的方法称为$ \ textit {flatnet} $,为从掩模基于掩模的无透镜摄像机中重建高质量的影像图像的框架,在该框架中已知相机的正向模型公式。 FLATNET由两个阶段组成:(1)倒置阶段,该阶段将测量值映射到前向模型公式中的学习参数,以及(2)感知增强阶段,以提高此中间重建的感知质量。这些阶段以端到端的方式一起训练。我们通过使用两种不同类型的无透镜原型在真实和挑战的场景上进行广泛的实验来显示高质量的重建:一种使用可分开的前向模型,另一种使用了更一般的不可分割的裁剪卷积模型。我们的端到端方法是快速的,产生了逼真的重建,并且易于用于其他基于面具的无透镜摄像机。

Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras by eschewing the bulky lens in a traditional camera. Without a focusing lens, the lensless cameras rely on computational algorithms to recover the scenes from multiplexed measurements. However, the current iterative-optimization-based reconstruction algorithms produce noisier and perceptually poorer images. In this work, we propose a non-iterative deep learning based reconstruction approach that results in orders of magnitude improvement in image quality for lensless reconstructions. Our approach, called $\textit{FlatNet}$, lays down a framework for reconstructing high-quality photorealistic images from mask-based lensless cameras, where the camera's forward model formulation is known. FlatNet consists of two stages: (1) an inversion stage that maps the measurement into a space of intermediate reconstruction by learning parameters within the forward model formulation, and (2) a perceptual enhancement stage that improves the perceptual quality of this intermediate reconstruction. These stages are trained together in an end-to-end manner. We show high-quality reconstructions by performing extensive experiments on real and challenging scenes using two different types of lensless prototypes: one which uses a separable forward model and another, which uses a more general non-separable cropped-convolution model. Our end-to-end approach is fast, produces photorealistic reconstructions, and is easy to adopt for other mask-based lensless cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源