论文标题

量子晶格系统的准局限性边界。第二部分。无挫败感的旋转模型的扰动与地面状态的扰动

Quasi-Locality Bounds for Quantum Lattice Systems. Part II. Perturbations of Frustration-Free Spin Models with Gapped Ground States

论文作者

Nachtergaele, Bruno, Sims, Robert, Young, Amanda

论文摘要

我们研究了量子自旋系统的宽大基态阶段的广泛扰动,这是由无挫败感的汉密尔顿人定义的。这项工作的核心结果是使用Bravyi-Hastings-Michalakis(BHM)策略的证明,即在局部拓扑量子顺序的条件下,在长距离衰减的扰动下,大容量间隙是稳定的,该损失速度长于较长的速度。与以前的工作相比,我们扩展了可以处理的无挫败感量子自旋模型,包括具有更通用边界条件的模型以及具有离散对称性破坏的模型。详细的估计值使我们能够为系统尺寸均匀且在某种程度上显式的间隙的正下限的有效性制定足够的条件。在Michalakis和Zwolak的方法之后,我们提供了BHM策略的调查,并引入了改动,以适应更一般的一般性,而不仅仅是周期性的边界条件和更一般的晶格。我们通过不可区分性半径的概念来表达称为LTQO的基本条件,这是我们引入的。使用统一的有限体积结果,我们继续研究热力学极限。我们首先研究了独特的限制基态的情况,然后考虑了自发破坏离散对称性的模型。在后一种情况下,LTQO不能容纳所有本地可观察物。但是,对于保留对称性的扰动,我们显示了间隙的稳定性和破碎的对称阶段的结构。我们证明,与每个纯状状态相关的GNS Hamiltonian具有高于基态的非零光谱差距。

We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems defined by frustration-free Hamiltonians. The core result of this work is a proof using the Bravyi-Hastings-Michalakis (BHM) strategy that under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential. Compared to previous work we expand the class of frustration-free quantum spin models that can be handled to include models with more general boundary conditions, and models with discrete symmetry breaking. Detailed estimates allow us to formulate sufficient conditions for the validity of positive lower bounds for the gap that are uniform in the system size and that are explicit to some degree. We provide a survey of the BHM strategy following the approach of Michalakis and Zwolak, with alterations introduced to accommodate more general than just periodic boundary conditions and more general lattices. We express the fundamental condition known as LTQO by means of the notion of indistinguishability radius, which we introduce. Using the uniform finite-volume results we then proceed to study the thermodynamic limit. We first study the case of a unique limiting ground state and then also consider models with spontaneous breaking of a discrete symmetry. In the latter case, LTQO cannot hold for all local observables. However, for perturbations that preserve the symmetry, we show stability of the gap and the structure of the broken symmetry phases. We prove that the GNS Hamiltonian associated with each pure state has a non-zero spectral gap above the ground state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源