论文标题
反向反应的变形全息模型中的波动和耗散
Fluctuation and dissipation within a deformed holographic model with backreaction
论文作者
论文摘要
在这项工作中,我们研究了在变形且反射的ADS-SCHWARZSCHILD时空中附着在Brane上的弦的波动和耗散。该空间是爱因斯坦 - 迪拉顿方程的解决方案,并包含公制中的共形指数因子$ \ exp(k/r^2)$。我们考虑仅来自ADS-SCHWARZSCHILD黑洞的指数扭曲因子的反应贡献,弦和Brane在探针近似中。 在这个Lorentz不变全息模型中,我们计算了入学,扩散系数,两点函数和正则化的均方根位移$ S^2_ {reg} $。从这个数量中,我们获得了布朗运动的弥漫性和弹道式特征。从两点函数和入学率中,我们还检查了此设置中已知的波动散失定理。
In this work we study the fluctuation and dissipation of a string attached to a brane in a deformed and backreated AdS-Schwarzschild spacetime. This space is a solution of Einstein-dilaton equations and contains a conformal exponential factor $\exp(k/r^2)$ in the metric. We consider the backreaction contributions coming only from the exponential warp factor on the AdS-Schwarzschild black hole, where the string and brane are in the probe approximation. Within this Lorentz invariant holographic model we have computed the admittance, the diffusion coefficient, the two-point functions and the regularized mean square displacement $s^2_{reg}$. From this quantity we obtain the diffuse and ballistic regimes characteristic of the Brownian motion. From the two-point functions and the admittance, we also have checked the well know fluctuation-dissipation theorem in this set up.