论文标题

使用约束贝叶斯优化的安全意识到的级联控制器调整

Safety-Aware Cascade Controller Tuning Using Constrained Bayesian Optimization

论文作者

König, Christopher, Khosravi, Mohammad, Maier, Markus, Smith, Roy S., Rupenyan, Alisa, Lygeros, John

论文摘要

本文提出了一种基于贝叶斯优化的PID级联控制器的安全调整,以安全调整PID级联控制器增益。优化目标由数据驱动的性能指标组成,并使用高斯流程进行建模。我们进一步引入了一个数据驱动的约束,该约束捕获了系统数据的稳定性要求。数值评估表明,由于量身定制的停止标准,所提出的方法的表现优于反馈自动调整,并迅速收敛到全球最佳距离。我们在模拟和实验中演示了该方法的性能。对于实验实施,除了引入安全性约束外,我们还整合了一种自动检测关键收益的方法,并将优化目标扩展到罚款,具体取决于当前候选人的接近性,指出了关键收益。最终的自动调整方法优化了系统性能,同时确保稳定性和标准化

This paper presents an automated, model-free, data-driven method for the safe tuning of PID cascade controller gains based on Bayesian optimization. The optimization objective is composed of data-driven performance metrics and modeled using Gaussian processes. We further introduce a data-driven constraint that captures the stability requirements from system data. Numerical evaluation shows that the proposed approach outperforms relay feedback autotuning and quickly converges to the global optimum, thanks to a tailored stopping criterion. We demonstrate the performance of the method in simulations and experiments. For experimental implementation, in addition to the introduced safety constraint, we integrate a method for automatic detection of the critical gains and extend the optimization objective with a penalty depending on the proximity of the current candidate points to the critical gains. The resulting automated tuning method optimizes system performance while ensuring stability and standardization

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源