论文标题

大规模和高维贝叶斯最佳实验设计的快速且可扩展的计算框架

A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design

论文作者

Wu, Keyi, Chen, Peng, Ghattas, Omar

论文摘要

我们开发了一个快速,可扩展的计算框架,以解决大规模和高维贝叶斯最佳实验设计问题。特别是,我们考虑了由部分微分方程(PDES)控制的高维参数的贝叶斯推断的最佳观察传感器放置问题,该参数是作为优化问题提出的,该优化问题旨在最大化预期信息增益(EIG)。由于高维参数的维度和大规模PDE的昂贵解决方案,因此这种优化问题尤其具有挑战性。为了应对这些挑战,我们利用了此类问题的两个基本特性:参数到观察地图的Jacobian的低排列结构来提取本质上较低的数据拟合数据拟合的子空间,以及通过一系列近似值的近似EIG的高相关性,以减少PDE求解的数量。我们为优化问题提出了一个有效的离线离线分解:计算所有需要有限数量的PDE求解的数量的离线阶段,独立于参数和数据维度求解,以及优化传感器放置的在线阶段,该阶段不需要任何PDE求解。为了进行在线优化,我们提出了一种交换贪婪的算法,该算法首先使用杠杆分数构造一组初始的传感器,然后将所选传感器与其他候选者交换,直到满足某些收敛标准为止。我们通过线性逆问题来证明所提出的计算框架的效率和可伸缩性,即推断对流扩散方程的初始条件,以及一个非线性逆问题,即推断对数正态分扩散方程的扩散系数,并且参数尺寸均来自几个tens到几千千次。

We develop a fast and scalable computational framework to solve large-scale and high-dimensional Bayesian optimal experimental design problems. In particular, we consider the problem of optimal observation sensor placement for Bayesian inference of high-dimensional parameters governed by partial differential equations (PDEs), which is formulated as an optimization problem that seeks to maximize an expected information gain (EIG). Such optimization problems are particularly challenging due to the curse of dimensionality for high-dimensional parameters and the expensive solution of large-scale PDEs. To address these challenges, we exploit two essential properties of such problems: the low-rank structure of the Jacobian of the parameter-to-observable map to extract the intrinsically low-dimensional data-informed subspace, and the high correlation of the approximate EIGs by a series of approximations to reduce the number of PDE solves. We propose an efficient offline-online decomposition for the optimization problem: an offline stage of computing all the quantities that require a limited number of PDE solves independent of parameter and data dimensions, and an online stage of optimizing sensor placement that does not require any PDE solve. For the online optimization, we propose a swapping greedy algorithm that first construct an initial set of sensors using leverage scores and then swap the chosen sensors with other candidates until certain convergence criteria are met. We demonstrate the efficiency and scalability of the proposed computational framework by a linear inverse problem of inferring the initial condition for an advection-diffusion equation, and a nonlinear inverse problem of inferring the diffusion coefficient of a log-normal diffusion equation, with both the parameter and data dimensions ranging from a few tens to a few thousands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源