论文标题

爱因斯坦重力来自6D中的共形重力

Einstein Gravity from Conformal Gravity in 6D

论文作者

Anastasiou, Giorgos, Araya, Ignacio J., Olea, Rodrigo

论文摘要

我们将Maldacena的论点扩展到了从共形重力获得爱因斯坦重力到六个维歧管。证明依赖于保形(和拓扑)不变性的特定组合,这表明了6D保形重力允许爱因斯坦部门。然后,通过采取广义的诺伊曼边界条件,共形重力作用减少到重新归一化的爱因斯坦 - 阿德的作用。这些限制是通过消失的无纹状体张量的消失,这是任何爱因斯坦时空的定义特性。共形性和爱因斯坦重力之间的等效使两次临界点的6D临界重力的溶液变得微不足道。

We extend Maldacena's argument, namely, obtaining Einstein gravity from Conformal Gravity, to six dimensional manifolds. The proof relies on a particular combination of conformal (and topological) invariants, which makes manifest the fact that 6D Conformal Gravity admits an Einstein sector. Then, by taking generalized Neumann boundary conditions, the Conformal Gravity action reduces to the renormalized Einstein-AdS action. These restrictions are implied by the vanishing of the traceless Ricci tensor, which is the defining property of any Einstein spacetime. The equivalence between Conformal and Einstein gravity renders trivial the Einstein solutions of 6D Critical Gravity at the bicritical point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源