论文标题

一分和两量的系统的复杂性

Complexity in One- and Two-Qubit Systems

论文作者

Caginalp, Reginald J., Leutheusser, Samuel

论文摘要

我们使用Nielsen复杂性几何形状的框架来分析单一时间进化和前体操作员在单一和双Quity系统中的复杂性。我们发现,正如预期的那样,对于一分和两分的病例,至少在最初,统一时间演化运算符的复杂性随时间线性生长。前体运算符显示类似换回的行为,只要我们选择成本因素,因此所产生的复杂性几何形状是负弯曲的。

We numerically analyze the complexity of unitary time-evolution and precursor operators in one- and two-qubit systems using the framework of Nielsen complexity geometry. We find that, as expected, the complexities of unitary time evolution operators grow linearly with time, at least initially, for both the one- and two-qubit cases. The precursor operators display switchback-effect-like behavior provided we choose our cost factors so that the resulting complexity geometry is negatively curved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源