论文标题

在Sidarthe流行模型中学习的最佳控制方法

An Optimal Control Approach to Learning in SIDARTHE Epidemic model

论文作者

Zugarini, Andrea, Meloni, Enrico, Betti, Alessandro, Panizza, Andrea, Corneli, Marco, Gori, Marco

论文摘要

COVID-19爆发激发了人们对新型流行病学模型的提议的兴趣,以预测流行病的进程,以帮助计划有效的控制策略。特别是,为了正确解释可用的数据,很明显,必须超越大多数经典的流行病学模型,并考虑像最近提出的Sidarthe一样的模型,对感染阶段提供了更丰富的描述。学习这些模型的参数的问题至关重要,尤其是在假设它们是时间变化的时候,这进一步增强了它们的有效性。在本文中,我们提出了一种从流行数据中学习动态隔室模型的时间变化参数的一般方法。我们根据动态系统的解决方案来取决于学习变量的功能风险来提出问题。然后,通过在适当的正规功能上使用梯度流量来解决所得的变异问题。我们预测意大利和法国的流行进化。结果表明,该模型对所有可用数据以及所选策略在时间变化参数上的基本作用提供了可靠且具有挑战性的预测。

The COVID-19 outbreak has stimulated the interest in the proposal of novel epidemiological models to predict the course of the epidemic so as to help planning effective control strategies. In particular, in order to properly interpret the available data, it has become clear that one must go beyond most classic epidemiological models and consider models that, like the recently proposed SIDARTHE, offer a richer description of the stages of infection. The problem of learning the parameters of these models is of crucial importance especially when assuming that they are time-variant, which further enriches their effectiveness. In this paper we propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data. We formulate the problem in terms of a functional risk that depends on the learning variables through the solutions of a dynamic system. The resulting variational problem is then solved by using a gradient flow on a suitable, regularized functional. We forecast the epidemic evolution in Italy and France. Results indicate that the model provides reliable and challenging predictions over all available data as well as the fundamental role of the chosen strategy on the time-variant parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源