论文标题
腹部1K:腹部器官分割是解决问题吗?
AbdomenCT-1K: Is Abdominal Organ Segmentation A Solved Problem?
论文作者
论文摘要
随着深度学习中前所未有的发展,主要的腹部器官的自动分割似乎是一个解决问题,因为最先进的方法(SOTA)方法在许多基准数据集中获得了可比的结果。但是,大多数现有的腹部数据集仅包含单一中心,单相,单供应商或单次疾病案例,并且尚不清楚出色的性能是否可以推广到不同的数据集中。本文介绍了一个大型且多样化的腹部CT器官分割数据集,称为腹部1K,其中有1000多个来自12个医疗中心的CT扫描,包括多阶段,多供应商和多疾病。此外,我们针对肝脏,肾脏,脾脏和胰腺分割进行了一项大规模研究,并揭示了SOTA方法的未解决分割问题,例如在不同的医疗中心,相位和看不见的疾病上的有限概括能力有限。为了促进未解决的问题,我们进一步构建了四个器官细分基准,以全面监督,半监督,弱监督和持续学习,这目前是具有挑战性和积极的研究主题。因此,我们为每个基准制定了一种简单有效的方法,可以用作开箱即用的方法和强基础。我们认为,腹部1K数据集将促进对临床适用的腹部器官分割方法的未来深入研究。数据集,代码和训练有素的模型可在https://github.com/junma11/abdomenct-1k上公开获取。
With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards clinical applicable abdominal organ segmentation methods. The datasets, codes, and trained models are publicly available at https://github.com/JunMa11/AbdomenCT-1K.