论文标题
矩阵产品密度运算符:他们什么时候有当地的哈密顿家族?
Matrix Product Density Operators: when do they have a local parent Hamiltonian?
论文作者
论文摘要
我们研究是否可以将矩阵产品密度运算符(MPDO)作为准局部父母哈密顿量的吉布斯状态。我们猜想通用MPDO是这种情况,并提供支持证据。为了研究父母哈密顿尔顿族人的位置,我们采取了检查量子条件相互信息是否呈指数衰减的方法。我们考虑的MPDO是由1输入/2输出(Y形)的链构建的完全阳性的地图,即MPDO具有局部纯化。我们在Bialochastic通道的条件互信息和严格的正通道上得出了上限,并表明如果通道的可更正代数是微不足道的,则它会衰减。我们还引入了量子数据处理不平等的猜想,这意味着每个Y形通道的有条件互信息的指数衰减,该通道具有琐碎的可更正代数。我们还研究了一个在当地测量的近亲但不务实的表亲:MPDO。我们为测量状态的条件互信息的指数衰减提供了足够的条件,并在数值上确认它们对于某些随机MPDO而言是正确的。
We study whether one can write a Matrix Product Density Operator (MPDO) as the Gibbs state of a quasi-local parent Hamiltonian. We conjecture this is the case for generic MPDO and give supporting evidences. To investigate the locality of the parent Hamiltonian, we take the approach of checking whether the quantum conditional mutual information decays exponentially. The MPDO we consider are constructed from a chain of 1-input/2-output (`Y-shaped') completely-positive maps, i.e., the MPDO have a local purification. We derive an upper bound on the conditional mutual information for bistochastic channels and strictly positive channels and show that it decays exponentially if the correctable algebra of the channel is trivial. We also introduce a conjecture on a quantum data processing inequality that implies the exponential decay of the conditional mutual information for every Y-shaped channel with trivial correctable algebra. We additionally investigate a close but nonequivalent cousin: MPDO measured in a local basis. We provide sufficient conditions for the exponential decay of the conditional mutual information of the measured states and numerically confirm they are generically true for certain random MPDO.