论文标题
off-shell $ {\ Mathcal n} =(1,0)$六个维度线性多重
Off-Shell ${\mathcal N}=(1,0)$ Linear Multiplets in Six Dimensions
论文作者
论文摘要
我们为$ {\ Mathcal n} =(1,0)$ n $ number提供张量计算,以六个维度为单位。线性多重组的耦合在函数$ {\ Mathcal f} _ {ij} $中编码,该_ {ij} $受某些约束的约束。我们提供各种刚性和本地的超对称模型,具体取决于功能的选择$ {\ Mathcal f} _ {ij} $,并提供了一个有趣的偏离式超变量,从而导致$ r^2 $ supergravity在消除辅助领域时。
We provide a tensor calculus for $n$-number of ${\mathcal N}=(1,0)$ linear multiplets in six dimensions. The coupling of linear multiplets is encoded in a function ${\mathcal F}_{IJ}$ that is subject to certain constraints. We provide various rigid and local supersymmetric models depending on the choice of the function ${\mathcal F}_{IJ}$ and provide an interesting off-diagonal superinvariant, which leads to an $R^2$ supergravity upon elimination of auxiliary fields.