论文标题

使用积分转换技术对具有变化表面积和温度依赖的热导率的鳍的瞬态传热分析

Transient heat transfer analysis of fins with variable surface area and temperature-dependent thermal conductivity using an integral transform technique

论文作者

Curi, Marcos, Zotin, Jose

论文摘要

本文的目的是在延伸表面上具有温度依赖的热导率,恒定的内部热量产生和五种不同的几何形状的瞬时传热分析。这项工作中开发的管理方程式考虑了描述所研究形状的函数的效果。为了确保更有效的热分析,我们研究了FIN的表面积及其弧长对对流项的影响,以及鳍片轮廓的总体功能影响储存的热能的体积速率。施加的边界条件是鳍和规定的基本温度的绝热类型。一种混合数学方法(称为广义积分变换技术(GITT))用于解决此处介绍的案例。首先通过hem结果对GITT获得的结果进行了验证,并在它们之间提出了极好的一致性,证明是一种适合处理非线性问题的方法。研究了对热数学参数(M),内部热量产生(Q)和可变导热率引起的温度分布和效率的物理影响。分析表明,M或减少Q在较长的短暂性周期内,无论评估的几何形状如何。此外,对于任何参数选择,如果增加线性形状的效率高于矩形鳍的效率。此外,根据热几何值,在其余形状中,矩形鳍变得更加有效。但是,对于较高的值,这些差异彼此之间没有区别,这表明横截面区域和FIN表面积对整体热分析产生了重大影响。

This paper aims at the transient heat transfer analysis on extended surfaces with temperature-dependent thermal conductivity, constant internal heat generation, and five different geometries. The governing equations developed in this work consider the effects of the function that describes the shapes studied. To ensure a more effective thermal analysis, we investigated the impact of the fin's surface area and its arc length on the convection term, and the influence of the overall function of the fin profile affecting the volumetric rate of stored thermal energy. The imposed boundary conditions are adiabatic type on the tip of the fin and prescribed base temperature. A hybrid mathematical method, known as the Generalized Integral Transform Technique (GITT), was used to solve the cases presented here. The results obtained with GITT were firstly validated with FEM results, presenting excellent agreement between them, proving been a method suitable for handling non-linear problems. Physical effects on the temperature distribution and efficiency due to the thermo-geometric parameter (M), internal heat generation (Q), and variable thermal conductivity were investigated.The analysis shows that increasing M or decreasing Q results in a longer transient period, regardless of the geometry assessed. Besides, the efficiency if the increasing linear shape is higher than those of the rectangular fin for any parameter choice. Moreover, depending on the thermo-geometric value, the rectangular fin becomes more efficient among the remaining shapes. However, for higher values, those differences become undistinguished from each other, demonstrating a significant impact of the varying cross-sectional area and the fin surface area on the overall thermal analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源