论文标题
拓扑干预管理与机密信息
Topological Interference Management with Confidential Messages
论文作者
论文摘要
拓扑干扰管理(TIM)问题是指在发射机(CSIT)上没有通道状态信息的K-用户部分连接的研究,但网络拓扑知识除外。在本文中,我们研究了使用机密消息(TIM-CM)的TIM问题,在此,除了可靠性限制外,还必须满足消息机密性。特别是,每个传输消息必须在其预期的接收器上可以解码,并且在其余(K-1)接收器中保持机密。 我们的主要贡献是通过研究对称的安全自由度(SDOF)来呈现TIM-CM问题的全面结果。为此,我们首先表征了任何任意拓扑的阳性对称SDOF的必要条件。接下来,我们针对TIM-CM问题呈现两个可实现的方案:对于第一个方案,我们使用安全分区的概念,对于第二个方案,我们使用安全独立集的概念。我们还为任何任意网络拓扑的对称SDOF介绍了外部边界。使用这些边界,我们表征了所有k = 2用户和k = 3用户网络拓扑的最佳对称SDOF。
The topological interference management (TIM) problem refers to the study of the K-user partially connected interference networks with no channel state information at the transmitters (CSIT), except for the knowledge of network topology. In this paper, we study the TIM problem with confidential messages (TIM-CM), where message confidentiality must be satisfied in addition to reliability constraints. In particular, each transmitted message must be decodable at its intended receiver and remain confidential at the remaining (K-1) receivers. Our main contribution is to present a comprehensive set of results for the TIM-CM problem by studying the symmetric secure degrees of freedom (SDoF). To this end, we first characterize necessary and sufficient conditions for feasibility of positive symmetric SDoF for any arbitrary topology. We next present two achievable schemes for the TIM-CM problem: For the first scheme, we use the concept of secure partition and, for the second one, we use the concept of secure independent sets. We also present outer bounds on symmetric SDoF for any arbitrary network topology. Using these bounds, we characterize the optimal symmetric SDoF of all K=2-user and K=3-user network topologies.