论文标题

奇学基本组的免费非交易性主要分区和通勤性

Free noncommutative principal divisors and commutativity of the tracial fundamental group

论文作者

Pascoe, J. E.

论文摘要

我们定义了自由非交易函数的主要除数。我们使用这些除数比较自由非交通函数的确定性奇异性集。我们表明,非交通合理函数的除数是两个多项式除数的差异。 我们制定了一个非平凡的统一理论,基本群体和涵盖了奇特自由功能的空间。我们表明,由奇特自由功能的分析延续引起的自然基础群体是$ \ mathbb {q} $的直接副本。我们的结果与经典案例进行了对比,在古典情况下,类似群体可能不是Abelian,而自由的普遍单构型意味着这种概念是微不足道的。

We define the principal divisor of a free noncommuatative function. We use these divisors to compare the determinantal singularity sets of free noncommutative functions. We show that the divisor of a noncommutative rational function is the difference of two polynomial divisors. We formulate a nontrivial theory of cohomology, fundamental groups and covering spaces for tracial free functions. We show that the natural fundamental group arising from analytic continuation for tracial free functions is a direct sum of copies of $\mathbb{Q}$. Our results contrast the classical case, where the analogous groups may not be abelian, and the free case, where free universal monodromy implies such notions would be trivial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源