论文标题

在非交通飞机上的石墨烯和塞伯格·盖特的地图

Graphene on noncommutative plane and the Seiberg-Witten map

论文作者

Halder, Aslam

论文摘要

在存在恒定背景磁场的情况下,在二维(2D)非交通(NC)平面上的石墨烯已被研究。为了处理量规不利问题,我们通过有效的Massles NC Dirac Field理论开始分析,在该理论中,我们将Seiberg-Witten(SW)地图与Moyal Star($ \ star $)产品合并在一起。然后计算出无质量狄拉克粒子的量规不变的哈密顿量,该粒子用于研究NC平面上石墨烯的相对论兰道问题。具体而言,我们研究了无质量相对论电子在单层石墨烯上移动的量子动力学,在NC平面上存在恒定背景磁场的情况下。我们还计算石墨烯中NC Landau系统的能源。获得的结果通过空间NC参数$θ$纠正。最后,我们访问NC平面石墨烯中电子的Weyl方程。有趣的是,在这种情况下,Helicity被发现是$θ$修改的。

Graphene on two dimensional (2D) noncommutative (NC) plane in the presence of a constant background magnetic field has been studied. To handel the gauge-invariance issue we start our analysis by a effective massles NC Dirac field theory where we incorporate the Seiberg-Witten (SW) map along with the Moyal star ($\star$) product. The gauge-invariant Hamiltonian of a massless Dirac particle is then computed which is used to study the relativistic Landau problem of graphene on NC plane. Specifically we study the quantum dynamics of a massless relativistic electron moves on monolayer graphene, in the presence of a constant background magnetic field, on NC plane. We also compute the energy spectrum of the NC Landau system in graphene. The results obtained are corrected by the spatial NC parameter $θ$. Finally we visit the Weyl equation for electron in graphene on NC plane. Interestingly, in this case helicity is found to be $θ$ modified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源