论文标题
另一个估计Mertens函数的绝对值
Another estimating the absolute value of Mertens function
论文作者
论文摘要
通过反转方法,我们建议对Mertens函数的绝对值$ \ vert m(x)\ vert $ at $ \ left \ welet \ vert m(x)\ right \ vert \ sim \ sim提出可能估算的估计。 \左[\ frac {1} {π\ sqrt {\ varepsilon}(x+\ varepsilon)} \ right] \ sqrt {x} $(其中$ x $是一个适当的大型实际数字,$ \ varepsilon $($ \ varepsilon $($ \ varepsilon $) $ 2X+\ varepsilon $作为整数)。对于任何大$ x $,我们总是可以找到$ \ varepsilon $,因此$ \ vert m(x)\ vert <\ left [\ frac {1} {π\ sqrt {\ sqrt {\ varepsilon}(x+\ varepsilon)} \ right]} \ sqrt}
Through an inversion approach, we suggest a possible estimation for the absolute value of Mertens function $\vert M(x) \vert$ that $ \left\vert M(x) \right\vert \sim \left[\frac{1}{π\sqrt{\varepsilon}(x+\varepsilon)}\right]\sqrt{x}$ (where $x$ is an appropriately large real number, and $\varepsilon$ ($0<\varepsilon<1$) is a small real number which makes $2x+\varepsilon$ to be an integer). For any large $x$, we can always find an $\varepsilon$, so that $\vert M(x) \vert < \left[\frac{1}{π\sqrt{\varepsilon}(x+\varepsilon)}\right]\sqrt{x}$.