论文标题
通过生成对抗网络和贝叶斯推断,Micro-CT合成和内耳超级分辨率
Micro-CT Synthesis and Inner Ear Super Resolution via Generative Adversarial Networks and Bayesian Inference
论文作者
论文摘要
现有的医疗图像超分辨率方法依赖于成对的低分辨率图像,以完全监督的方式学习映射。但是,这种图像对通常在临床实践中不可用。在本文中,我们使用未配对的数据在现实情况下解决了超分辨率问题,并合成了线性\ textbf {八次}颞骨结构的高分辨率micro-ct图像,该图像嵌入了内耳中。我们探索了循环一致性生成的对抗网络,以进行超分辨率任务,并配备翻译方法和贝叶斯推断。我们进一步引入\ emph {hu矩距离}评估度量标准以量化颞骨的形状。我们在公共内耳CT数据集上评估了我们的方法,并在基于深度学习的方法中看到了视觉和定量改进。此外,我们执行了一个多评价者的视觉评估实验,并发现受过训练的专家始终将所提出的方法评级为所有方法中的最高质量得分。此外,我们能够量化未配对的翻译任务中的不确定性,并且不确定性图可以提供颞骨的结构信息。
Existing medical image super-resolution methods rely on pairs of low- and high- resolution images to learn a mapping in a fully supervised manner. However, such image pairs are often not available in clinical practice. In this paper, we address super-resolution problem in a real-world scenario using unpaired data and synthesize linearly \textbf{eight times} higher resolved Micro-CT images of temporal bone structure, which is embedded in the inner ear. We explore cycle-consistency generative adversarial networks for super-resolution task and equip the translation approach with Bayesian inference. We further introduce \emph{Hu Moment distance} the evaluation metric to quantify the shape of the temporal bone. We evaluate our method on a public inner ear CT dataset and have seen both visual and quantitative improvement over state-of-the-art deep-learning-based methods. In addition, we perform a multi-rater visual evaluation experiment and find that trained experts consistently rate the proposed method the highest quality scores among all methods. Furthermore, we are able to quantify uncertainty in the unpaired translation task and the uncertainty map can provide structural information of the temporal bone.