论文标题

戴口罩:使用复发性神经切线内核的可变长度序列的压缩表示

Wearing a MASK: Compressed Representations of Variable-Length Sequences Using Recurrent Neural Tangent Kernels

论文作者

Alemohammad, Sina, Babaei, Hossein, Balestriero, Randall, Cheung, Matt Y., Humayun, Ahmed Imtiaz, LeJeune, Daniel, Liu, Naiming, Luzi, Lorenzo, Tan, Jasper, Wang, Zichao, Baraniuk, Richard G.

论文摘要

高维度对数据的使用构成了许多挑战,从可视化和解释到用于历史保存的预测和存储。降低固定长度序列的维度的技术丰富,但是这些方法很少将其推广到可变长度序列。为了解决这一差距,我们扩展了依赖内核通过使用复发性神经切线核(RNTK)的可变长度序列的现有方法。由于具有RELU激活的深神经网络是最大蛋白样条操作员(MASO),因此我们将方法配音Max-Affine样条线核(Mask)。我们演示了如何使用掩码扩展主组件分析(PCA)和T分布的随机邻居嵌入(T-SNE),并应用这些新算法以分离从二阶微分方程采样的合成时间序列数据。

High dimensionality poses many challenges to the use of data, from visualization and interpretation, to prediction and storage for historical preservation. Techniques abound to reduce the dimensionality of fixed-length sequences, yet these methods rarely generalize to variable-length sequences. To address this gap, we extend existing methods that rely on the use of kernels to variable-length sequences via use of the Recurrent Neural Tangent Kernel (RNTK). Since a deep neural network with ReLu activation is a Max-Affine Spline Operator (MASO), we dub our approach Max-Affine Spline Kernel (MASK). We demonstrate how MASK can be used to extend principal components analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) and apply these new algorithms to separate synthetic time series data sampled from second-order differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源