论文标题

通过(图)卷积神经网络处理不完整的图像

Processing of incomplete images by (graph) convolutional neural networks

论文作者

Danel, Tomasz, Śmieja, Marek, Struski, Łukasz, Spurek, Przemysław, Maziarka, Łukasz

论文摘要

我们研究了从不完整图像训练神经网络的问题,而无需替换缺失值。为此,我们首先将图像表示为图,其中缺少像素完全忽略了。使用空间图卷积网络(SGCN)处理图像图像表示 - 一种类型的图形卷积网络,这是对在图像上运行的经典CNN的正确概括。一方面,我们的方法避免了丢失数据插补的问题,另一方面,CNNS和SGCN之间存在自然的对应关系。实验证实,我们的方法的表现要比类比CNN更好,并且在典型的分类和重建任务上插入了缺失值。

We investigate the problem of training neural networks from incomplete images without replacing missing values. For this purpose, we first represent an image as a graph, in which missing pixels are entirely ignored. The graph image representation is processed using a spatial graph convolutional network (SGCN) -- a type of graph convolutional networks, which is a proper generalization of classical CNNs operating on images. On one hand, our approach avoids the problem of missing data imputation while, on the other hand, there is a natural correspondence between CNNs and SGCN. Experiments confirm that our approach performs better than analogical CNNs with the imputation of missing values on typical classification and reconstruction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源