论文标题

泰坦气溶胶类似物“ tholin”的表面能

Surface Energy of the Titan Aerosol Analog "Tholin"

论文作者

Yu, Xinting, Horst, Sarah, He, Chao, McGuiggan, Patricia, Kristiansen, Kai, Zhang, Xi

论文摘要

在泰坦上层大气中产生的光化学雾度在泰坦的各种大气和表面过程中都起着关键作用。表面能是雾兹的一种重要物理特性,对于理解雾剂颗粒的生长至关重要,可以用来用泰坦上的固体和液体物种来预测其润湿行为。我们用不同的能源生产了所谓的“ tholin”泰坦模拟雾化材料,并通过接触角和直接力测量测量了其表面能量。从接触角度测量中,我们发现由冷等离子体和紫外线照射产生的硫素的总表面能约为60-70 mJ/m2。血浆tholin的直接力测量得出的总表面能量约为66 MJ/m2。与普通聚合物相比,硫林的表面能相对较高,表明其高粘性。因此,泰坦薄荷颗粒可能很容易地凝结以形成更大的颗粒,而由于粒子间内部的高度,薄雾衍生的表面砂颗粒需要更高的风速才能动员。托林的高表面能也使它们容易通过泰坦的大气烃凝结物和表面液体来润湿。因此,对于碳氢化合物云(甲烷和乙烷)而言,危险颗粒可能是良好的云凝结核(CCN),以核定和生长。而且,如果与湖液体相比,榛子颗粒比湖水更密集,它们可能会沉入湖泊中,而不是形成浮膜以抑制湖面波浪。

The photochemical haze produced in the upper atmosphere of Titan plays a key role in various atmospheric and surface processes on Titan. The surface energy, one important physical properties of the haze, is crucial for understanding the growth of the haze particles and can be used to predict their wetting behavior with solid and liquid species on Titan. We produced Titan analog haze materials, so-called "tholin", with different energy sources and measured their surface energies through contact angle and direct force measurements. From the contact angle measurement, we found that the tholins produced by cold plasma and UV irradiation have total surface energy around 60-70 mJ/m2. The direct force measurement yields a total surface energy of ~66 mJ/m2 for plasma tholin. The surface energy of tholin is relatively high compared to common polymers, indicating its high cohesiveness. Therefore, the Titan haze particles would likely coagulate easily to form bigger particles, while the haze-derived surface sand particles would need higher wind speed to be mobilized because of the high interparticle cohesion. The high surface energy of tholins also makes them easily wettable by Titan's atmospheric hydrocarbon condensates and surface liquids. Thus, the hazes particles are likely good cloud condensation nuclei (CCN) for hydrocarbon clouds (methane and ethane) to nucleate and grow. And if the hazes particles are denser compared to the lake liquids, they would likely sink into the lakes instead of forming a floating film to dampen the lake surface waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源