论文标题

贝叶斯特征的重要性(BIF)

Bayesian Importance of Features (BIF)

论文作者

Adamczewski, Kamil, Harder, Frederik, Park, Mijung

论文摘要

我们介绍了一个简单而直观的框架,该框架通过对输入特征重要性的概率评估来提供统计模型的定量解释。核心思想来自利用Dirichlet分布来定义输入特征的重要性,并通过大致贝叶斯推断学习。学到的重要性具有概率的解释,并提供了每个输入特征与模型输出的相对重要性,并评估了对其重要性量化的信心。由于在解释上使用了Dirichlet分布,我们可以定义封闭形式的差异来衡量不同模型下所学到的重要性之间的相似性。我们使用这种差异来研究具有现代机器学习(例如隐私和公平)中基本概念的解释性权衡。此外,BIF可以在两个层面上工作:全局说明(所有数据实例中的特征重要性)和本地说明(每个数据实例的个人特征重要性)。考虑到表格数据集和图像数据集,我们显示了方法对各种合成和真实数据集的有效性。该代码可在https://github.com/kamadforge/featimp_dp上找到。

We introduce a simple and intuitive framework that provides quantitative explanations of statistical models through the probabilistic assessment of input feature importance. The core idea comes from utilizing the Dirichlet distribution to define the importance of input features and learning it via approximate Bayesian inference. The learned importance has probabilistic interpretation and provides the relative significance of each input feature to a model's output, additionally assessing confidence about its importance quantification. As a consequence of using the Dirichlet distribution over the explanations, we can define a closed-form divergence to gauge the similarity between learned importance under different models. We use this divergence to study the feature importance explainability tradeoffs with essential notions in modern machine learning, such as privacy and fairness. Furthermore, BIF can work on two levels: global explanation (feature importance across all data instances) and local explanation (individual feature importance for each data instance). We show the effectiveness of our method on a variety of synthetic and real datasets, taking into account both tabular and image datasets. The code is available at https://github.com/kamadforge/featimp_dp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源