论文标题
轨道分配使用基于注意的策略模型和监督的详细路由
Track-Assignment Detailed Routing Using Attention-based Policy Model With Supervision
论文作者
论文摘要
详细路由是模拟电路设计中最关键的步骤之一。在高级节点模拟电路中,完整的路由变得越来越具有挑战性,使有效的自动路由器的进步变得更加必要。在这项工作中,我们提出了一种机器学习驱动的方法,用于解决高级节点模拟电路的轨道分配详细路由问题。我们的方法采用了基于注意力的强化学习(RL)政策模型。我们对此RL模型的主要见解和进步是使用监督作为利用常规遗传算法(GA)产生的解决方案的一种方式。为此,我们的方法最大程度地减少了RL策略模型的输出与从遗传求解器获得的溶液分布之间的kullback-leibler差异损失。这种方法的关键优点是,路由器可以通过监督在离线设置中学习政策,同时将运行时的性能近100倍,而不是遗传求解器。此外,我们的方法的解决方案的质量与GA生成的解决方案非常匹配。我们表明,特别是对于复杂问题,我们的监督RL方法提供了类似于常规注意RL的优质解决方案,而不包括运行时间性能。从示例设计中学习并训练路由器以获取类似的解决方案的能力,可以通过数量级的改进获得类似的解决方案,这可能会极大地影响设计流程,从而有可能增加设计探索和路由驱动的位置。
Detailed routing is one of the most critical steps in analog circuit design. Complete routing has become increasingly more challenging in advanced node analog circuits, making advances in efficient automatic routers ever more necessary. In this work, we propose a machine learning driven method for solving the track-assignment detailed routing problem for advanced node analog circuits. Our approach adopts an attention-based reinforcement learning (RL) policy model. Our main insight and advancement over this RL model is the use of supervision as a way to leverage solutions generated by a conventional genetic algorithm (GA). For this, our approach minimizes the Kullback-Leibler divergence loss between the output from the RL policy model and a solution distribution obtained from the genetic solver. The key advantage of this approach is that the router can learn a policy in an offline setting with supervision, while improving the run-time performance nearly 100x over the genetic solver. Moreover, the quality of the solutions our approach produces matches well with those generated by GA. We show that especially for complex problems, our supervised RL method provides good quality solution similar to conventional attention-based RL without comprising run time performance. The ability to learn from example designs and train the router to get similar solutions with orders of magnitude run-time improvement can impact the design flow dramatically, potentially enabling increased design exploration and routability-driven placement.