论文标题
使用统计CSI的RIS辅助大规模MIMO系统的功率缩放法分析和相移优化
Power Scaling Law Analysis and Phase Shift Optimization of RIS-aided Massive MIMO Systems with Statistical CSI
论文作者
论文摘要
本文考虑了具有统计通道状态信息(CSI)的上行链路可重新配置的智能表面(RIS)大量多输入多输出(MIMO)系统。部署RIS是为了帮助传统的大型MIMO网络为死区域的用户提供服务。我们考虑了里奇亚通道模型,并利用长期统计CSI设计RI的相移,而最大比率组合(MRC)技术则用于依靠瞬时CSI的基站(BS)的主动波束成形。首先,我们揭示了功率缩放定律,并得出了可在任意数量的基站(BS)天线的上行链路可实现速率的封闭形式表达式。基于理论表达式,我们讨论了一些特殊情况下的速率性能,并在使用随机相移时提供平均渐近率。然后,我们通过优化RIS的相移来考虑总和最大化和最小用户速率最大化问题。但是,由于复杂的数据速率表达,这两个优化问题难以解决。为了解决这些问题,我们提出了一种具有低复杂性的新型遗传算法(GA),但可以实现相当大的性能。最后,提供了广泛的模拟来通过将RIS整合到常规的大型MIMO系统中来验证这些收益。此外,我们的模拟证明了在大型MIMO系统中部署大型但低分辨率的RI的可行性。
This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system with statistical channel state information (CSI). The RIS is deployed to help conventional massive MIMO networks serve the users in the dead zone. We consider the Rician channel model and exploit the long-time statistical CSI to design the phase shifts of the RIS, while the maximum ratio combination (MRC) technique is applied for the active beamforming at the base station (BS) relying on the instantaneous CSI. Firstly, we reveal the power scaling laws and derive the closed-form expressions for the uplink achievable rate which holds for arbitrary numbers of base station (BS) antennas. Based on the theoretical expressions, we discuss the rate performance under some special cases and provide the average asymptotic rate when using random phase shifts. Then, we consider the sum-rate maximization and the minimum user rate maximization problems by optimizing the phase shifts at the RIS. However, these two optimization problems are challenging to solve due to the complicated data rate expression. To solve these problems, we propose a novel genetic algorithm (GA) with low complexity but can achieve considerable performance. Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems. Besides, our simulations demonstrate the feasibility of deploying large-size but low-resolution RIS in massive MIMO systems.